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Supplementary Information

Neural network architecture and parameters

Networks were trained for 500 epochs with a batch size of 128. The RMSprop optimiser was used 
with learning rate of 0.001 and mean squared error as loss function. The architecture of the 
networks is illustrated in Figure S1. All Dense layers had 768 units with ReLU activations and 
dropout was set to 0.5.

Figure 1. Schematic illustration of the residual deep neural networks used in the study.

Comparing the error between networks with different number of residual blocks
Mean validation losses were calculated for 100 bootstrapped neural networks with two, four or six 
residual blocks after 500 training epochs using mean squared error (Fig. S2). Statistics were 
calculated using random permutation tests, based on 100,000 resamples. P-values were adjusted for 
multiple comparisons with False Discovery Rate [1]. We found that neural networks with four 
residual blocks produced significantly lower error rates compared to networks with two or six 
residual blocks, in all four experimental conditions (Table S1).



Table S1. Comparisons of mean validation losses for networks with two, four or six residual blocks in all 
four experimental conditions. 

Condition Comparison P-value

Temperate forest trichromat 4 vs. 2 .0093

4 vs. 6 .0093

Temperate forest dichromat 4 vs. 2 .0012

4 vs. 6 .0115

Semi-arid desert trichromat 4 vs. 2 < .0001

4 vs. 6 < .0001

Semi-arid desert dichromat 4 vs. 2 .01022

4 vs. 6 .01022



Figure S2. Mean validation losses for neural networks with two, four or six residual blocks across 500 
training epochs for all four experimental conditions.



GLMM results for trichromat vs. dichromat conditions in validation experiment

The effects of trichromat vs. dichromat conditions in the validation experiment were analysed by 
fitting generalised linear mixed models (GLMM) with gamma distributions (log link function) using
the lme4 package [2] in R [3]. Gamma distributions were chosen due to the non-normality of 
reaction time data (Table S6) [4]. Nested models were compared using the change in deviance on 
removal of a term and by the Bayesian information criterion (BIC) [5]. Participant ID was treated as
a random variable within the models. If a model including a term for chromatic condition had a 
significantly better fit to the one without it, the effect of the chromatic condition was significant 
(Table S2). Pairwise post-hoc analysis revealed that in all conditions dichromat targets were harder 
to see than trichromat targets (Table S3). P-values were adjusted for multiple comparisons with 
False Discovery Rate [1].

Table S2. Comparison of GLMMs with and without the chromatic condition term.

Location BIC (without) BIC (with) Δdeviance DF P-value

Temperate forest -777.64 -879.4 109.55 1 < .0001

Semi-arid desert -2168.1 -2204.7 44.443 1 < .0001

Table S3. GLMM estimates, standard error and p-values from the post-hoc analysis of dichromat vs. 
trichromat conditions.

Condition Comparison Estimate Std. Error P-value

Temperate forest Dichromat Easiest vs. Trichromat Easiest 0.0628 0.0248 .0112

Dichromat Intermediate vs. Trichromat Intermediate 0.1227 0.0248 < .0001

Dichromat Hardest vs. Trichromat Hardest 0.2726 0.0248 < .0001

Semi-arid desert Dichromat Easiest vs. Trichromat Easiest 0.0862 0.0213 < .0001

Dichromat Intermediate vs. Trichromat Intermediate 0.0627 0.0213 .0032

Dichromat Hardest vs. Trichromat Hardest 0.0898 0.0213 < .0001



GLMM results for increasing predicted difficulty in validation experiment

The effects of increasing predicted difficulty in the validation experiment were also analysed with 
GLMMs. If a model including a term for difficulty groups had a significantly better fit to the one 
without it, the effect of difficulty groups was significant (Table S4). Pairwise post-hoc analysis 
revealed that in all conditions progressively more difficult groups (predicted as easiest, 
intermediate, and hardest by the neural networks) were significantly harder to find (Table S5). P-
values were adjusted for multiple comparisons with False Discovery Rate [1].

Table S4. Comparison of GLMMs with and without the difficulty groups term.

Location Chromatic condition BIC (without) BIC (with) Δdeviance DF P-value

Temperate forest Trichromat -908.72 -1068.74 174.20 2 < .0001

Temperate forest Dichromat 272.00 37.50 248.68 2 < .0001

Semi-arid desert Trichromat -1176.50 -1283.00 120.68 2 < .0001

Semi-arid desert Dichromat -953.98 -831.31 136.85 2 < .0001

Table S5. GLMM estimates, standard error and p-values from the post-hoc analysis of difficulties in the 
validation experiment.

Condition Comparison Estimate Std. error P-value

Temperate forest trichromat Easiest vs. Intermediate 0.2198 0.0203 < .0001

Intermediate vs. Hardest 0.0423 0.0203 .0373

Temperate forest dichromat Easiest vs. Intermediate 0.281 0.0284 < .0001

Intermediate vs. Hardest 0.1918 0.0284 < .0001

Semi-arid desert trichromat Easiest vs. Intermediate 0.0775 0.0194 < .0001

Intermediate vs. Hardest 0.1371 0.0194 < .0001

Semi-arid desert dichromat Easiest vs. Intermediate 0.1864 0.0206 < .0001

Intermediate vs. Hardest 0.0521 0.0206 .0116



Table S6. Shapiro-Wilk normality test results of the validation experiment.

Condition W P-value

Temperate forest trichromat Easiest 0.8186 < .0001

Intermediate 0.8235 < .0001

Hardest 0.866 < .0001

Temperate forest dichromat Easiest 0.8453 < .0001

Intermediate 0.864 < .0001

Hardest 0.7927 < .0001

Semi-arid trichromat Easiest 0.8623 < .0001

Intermediate 0.8418 < .0001

Hardest 0.7515 < .0001

Semi-arid dichromat Easiest 0.8620 < .0001

Intermediate 0.8785 < .0001

Hardest 0.8594 < .0001



Table S7. Reference and measured values of projected colours using a Minolta CS-100A Luminance and 
Color Meter (Minolta Co., Ltd., Osaka, Japan).

Manufacturer's sRGB D65 colour values Measured Yxy values Description

52 53 53 4.0 0.278 0.333 Black

84 86 87 10.3 0.279 0.324 Neutral 3.5

121 121 121 21.8 0.281 0.326 Neutral 5

162 163 162 38.4 0.280 0.330 Neaural 6.5

203 204 203 60.4 0.276 0.334 Neutral 8

249 249 244 78.0 0.276 0.343 White

0 137 167 22.6 0.200 0.268 Cyan

190 87 152 17.2 0.294 0.202 Magenta

241 201 25 52.6 0.433 0.537 Yellow

174 60 61 10.6 0.501 0.326 Red

76 152 74 24.2 0.303 0.552 Green

49 68 151 8.3 0.167 0.138 Blue

230 160 45 27.4 0.465 0.497 Orange yellow

162 190 65 34.5 0.380 0.563 Yellow green

93 61 105 6.2 0.250 0.201 Purple

195 83 97 13.2 0.423 0.296 Moderate red

72 92 174 11.0 0.178 0.159 Purplish blue

222 123 51 19.2 0.304 0.439 Orange

98 191 170 29.7 0.246 0.367 Bluish green

130 129 175 17.3 0.233 0.234 Blue flower

95 109 68 10.7 0.340 0.464 Foliage

92 123 156 16.2 0.220 0.253 Blue sky

195 147 129 23.8 0.356 0.354 Light skin

117 85 72 8.5 0.374 0.362 Darkin skin
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